90 research outputs found

    Non-thermalization in trapped atomic ion spin chains

    Full text link
    Linear arrays of trapped and laser cooled atomic ions are a versatile platform for studying emergent phenomena in strongly-interacting many-body systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatiotemporal resolution, decoupling from the external environment, and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin-models which are heralded by memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.Comment: 14 pages, 5 figures, submitted for edition of Phil. Trans. R. Soc. A on "Breakdown of ergodicity in quantum systems

    Hausdorff dimension of a quantum string

    Full text link
    In the path integral formulation of quantum mechanics, Feynman and Hibbs noted that the trajectory of a particle is continuous but nowhere differentiable. We extend this result to the quantum mechanical path of a relativistic string and find that the ``trajectory'', in this case, is a fractal surface with Hausdorff dimension three. Depending on the resolution of the detecting apparatus, the extra dimension is perceived as ``fuzziness'' of the string world-surface. We give an interpretation of this phenomenon in terms of a new form of the uncertainty principle for strings, and study the transition from the smooth to the fractal phase.Comment: 18 pages, non figures, ReVTeX 3.0, in print on Phys.Rev.

    Discrete Symmetries of Off-Shell Electromagnetism

    Full text link
    We discuss the discrete symmetries of the Stueckelberg-Schrodinger relativistic quantum theory and its associated 5D local gauge theory, a dynamical description of particle/antiparticle interactions, with monotonically increasing Poincare-invariant parameter. In this framework, worldlines are traced out through the parameterized evolution of spacetime events, advancing or retreating with respect to the laboratory clock, with negative energy trajectories appearing as antiparticles when the observer describes the evolution using the laboratory clock. The associated gauge theory describes local interactions between events (correlated by the invariant parameter) mediated by five off-shell gauge fields. These gauge fields are shown to transform tensorially under under space and time reflections, unlike the standard Maxwell fields, and the interacting quantum theory therefore remains manifestly Lorentz covariant. Charge conjugation symmetry in the quantum theory is achieved by simultaneous reflection of the sense of evolution and the fifth scalar field. Applying this procedure to the classical gauge theory leads to a purely classical manifestation of charge conjugation, placing the CPT symmetries on the same footing in the classical and quantum domains. In the resulting picture, interactions do not distinguish between particle and antiparticle trajectories -- charge conjugation merely describes the interpretation of observed negative energy trajectories according to the laboratory clock.Comment: 26 page

    Boson-fermion unification, superstrings, and Bohmian mechanics

    Full text link
    Bosonic and fermionic particle currents can be introduced in a more unified way, with the cost of introducing a preferred spacetime foliation. Such a unified treatment of bosons and fermions naturally emerges from an analogous superstring current, showing that the preferred spacetime foliation appears only at the level of effective field theory, not at the fundamental superstring level. The existence of the preferred spacetime foliation allows an objective definition of particles associated with quantum field theory in curved spacetime. Such an objective definition of particles makes the Bohmian interpretation of particle quantum mechanics more appealing. The superstring current allows a consistent Bohmian interpretation of superstrings themselves, including a Bohmian description of string creation and destruction in terms of string splitting. The Bohmian equations of motion and the corresponding probabilistic predictions are fully relativistic covariant and do not depend on the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy

    Observation of a prethermal discrete time crystal

    No full text
    corecore